Cosmic Ray Backgrounds

Leon Mualem
University of Minnesota

Ground Level Components

Muons

- Vertical Diff flux @1GeV ~30/m²/s/sr/GeV
 - Vert Integral Flux > 1GeV = 80/m²/s/sr*2000m²sr=0.2MHz
- Angular distribution $\sim \cos^2(\theta)$
- $\sim E^{-1}, E^{-2}, E^{-3} (1,10,100 \text{ GeV/c})$

Neutrons

- Vertical Diff flux @1GeV ~1/m²/s/sr/GeV
 - Vert Integral Flux > $1 \text{GeV} = 0.4 \text{/m}^2/\text{s/sr}^2 2000 \text{m}^2 \text{sr} = 0.8 \text{kHz}$
- Angular distribution ~exp(-8(secθ-1))
- ~E^{-2.7}

Photons

- Vertical Diff flux @1GeV ~1/m²/s/sr/GeV
 - Vert Integral Flux > $1 \text{GeV} = 0.4/\text{m}^2/\text{s/sr}^2 = 0.8 \text{kHz}$
- Angular distribution $\sim \exp(-8(\sec\theta-1))$ -> $\exp(-1.1(\sec\theta-1))$
- _ ~F-2.7

Simulations of Cosmic Ray Induced Backgrounds

- Ground-level neutrons and photons
- Detector: 15.7x15.7x134m ~2000 m² effective area)
- Generate neutron and photon fluxes with
 - zenith angle random in cosθ, bins of 0.1
 - random energy (flat 1-4GeV)
 - random azimuthal angle
 - random position on detector
- Analyze with PJL standard selections

Neutrons

- Data from Ashton, "CR at ground level", ed.
 Wolfendale (1974)
- Atten. Length: ~120 g/cm²
- $I(\theta) = I(0) \exp(-8(\sec \theta 1))$

Integral neutron flux at ground level

Neutron Selection Probability

(Using Standard Analysis)

Probability of selecting a neutron as a function of zenith angle: $P(\theta)$

Neutron Rate vs. Angle

Integral neutron rate (neutrons/s) as a function of angle: $R(\theta)=I(0)^*$ $\exp(-8(\sec\theta-1))^*$ acceptance(θ)* dcos θ

Selected Neutron Event Distribution

 $N(\theta) = P(\theta) * R(\theta) * T$

Total Events
=0.30 in
5 year
exposure
(500s live)

Electrons and photons

- Data from Daniels and Stephens; Revs Geophys. And Space Sci. 12, 233(1974)
- $\sim \cos^2\theta$ for $\theta < 60^\circ$
- Median energy " 10s of MeV
- Attenuated as ~exp(x/175g.cm⁻²)

Integral electron and photon flux at surface

Photon Background

Considered likely to be selected as electron event –EM interactions

- Angular suppression not as strong as neutrons
- Difficult to simulate correctly (easily)
 - Photons are from hadronic interactions production of π^0 ; Associated particles should aid rejection
 - Need to start with parent particles –N or P
 - Photons can be seen from relatively far away
 - Need to simulate large volume (X₀=300m!)
- Estimate upper limit by simply simulating the photons as was done for neutrons

Photon Selection Probability

(Using Standard Analysis)

Probability of selecting a photon as a function of zenith angle: $P(\theta)$

Photon Rate vs. Angle

Integral photon rate (photons/s) as a function of angle: $R(\theta)=I(\theta)^*$ acceptance(θ) *dcos θ

Selected Photon Event Distribution

Total Events
= 2600 in
5 year
exposure
(500s live)

Photon reduction possibilities

- Where can we go from here?
 - 2600 events is an unacceptable level of background
- Additional reduction
 - Containment/Fiducial cuts
 - Interaction length ~80cm, current cut 15cm
 - increase, and increase on front/back faces
 - Angular cuts
 - currently at 45 degrees for no impact on FOM
 - Correlated events
 - How much flux comes in clusters, CORSIKA simulation
 - Overburden
 - Attenuation length ~125g/cm²; ~ 60cm

Photon background vs. Overburden depth

 Reduction from 2560 events of photon background vs. depth

Potential side effects

- Better climate control
 - (handy in Northern Minnesota)
- Vastly improved SuperNOvA detection

Depth	Signal	EM bkd	Neutron	S/sqrt(b)
0m	1500	10,000	3,000	13
1m	1500	1800	424	30
2m	1500	320	60	77
3m	1500	57	8.5	185
4m	1500	10	1.2	450

Conclusions

EM background appears substantial

- Possible help
 - Increase cuts, length, angle, correlations
 - Reduces signals
 - Probably not enough

Ostrich Solution

- Doesn't affect signals
- Substantial increase in Supernova sensitivity
-